This FOA solicits applications for research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior. The goal is to support projects that can realize a meaningful outcome within 5 years. Applications should address circuit function in the context of specific neural systems such as sensation, perception, attention, reasoning, intention, decision-making, emotion, navigation, communication or homeostasis. Projects should link theory and data analysis to experimental design and should produce predictive models as deliverables. Projects should aim to improve the understanding of circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating dynamic patterns of neural activity. Projects can use non-human animal species, and applications should explain how the selected species offers ideal conditions for revealing general principles about the circuit basis of a specific behavior.
Notices of Funding Opportunities
National Institutes of Health (NIH) BRAIN Initiative notices of funding opportunities (NOFOs), requests for applications (RFAs), program announcements (PAs), and other NIH Guide announcements are listed below. Search this page to find all notices of special interest (NOSI). Search the Closed Opportunities page to find expired opportunities.
Learn more about NIH’s grant mechanisms.
Learn about the NIH Data Management and Sharing Policy, which all NIH applications must follow.
To see more NIH-funded awards, please visit NIH Grants and Funding.
For more about NIH BRAIN Initiative research and associated funding opportunities, visit the Research Overview.
This FOA solicits applications for exploratory research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior. Applications should offer a limited scope of aims and an approach that will establish feasibility, validity or other technically qualifying results that, if successful, would support a potential, subsequent Targeted Brain Circuits Projects - TargetedBCP R01, as described in the companion FOA (RFA-NS-17-014).
This FOA will support integrated, interdisciplinary research teams from prior BRAIN technology and/or integrated approaches teams, and/or new projects from the research community that focus on examining circuit functions related to behavior, using advanced and innovative technologies. The goal will be to support programs with a team science approach that can realize meaningful outcomes within 5-plus years. Awards will be made for 5 years, with a possibility of one competing renewal. Applications should address overarching principles of circuit function in the context of specific neural systems underlying sensation, perception, emotion, motivation, cognition, decision-making, motor control, communication, or homeostasis. Applications should incorporate theory-/model-driven experimental design and should offer predictive models as deliverables. Applications should seek to understand circuits of the central nervous system by systematically controlling stimuli and/or behavior while actively recording and/or manipulating relevant dynamic patterns of neural activity and by measuring the resulting behaviors and/or perceptions. Applications are expected to employ approaches guided by specified theoretical constructs, and are encouraged to employ quantitative, mechanistic models where appropriate. Applications will be required to manage their data and analysis methods in a prototype framework that will be developed and used in the proposed U19 project and exchanged with other U19 awardees for further refinement and development. Model systems, including the possibility of multiple species ranging from invertebrates to humans, can be employed and should be appropriately justified. Budgets should be commensurate with multi-component teams of research expertise including neurobiologists, statisticians, physicists, mathematicians, engineers, computer scientists, and data scientists, as appropriate - that seek to cross boundaries of interdisciplinary collaboration.
This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, aims to support early stage development of entirely new and novel noninvasive human brain imaging technologies and methods that will lead to transformative advances in our understanding of the human brain. The FOA solicits unusually bold and potentially transformative approaches and supports small scale, proof of concept development based on exceptionally innovative, original and/or unconventional concepts.
This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, is one of several FOAs aimed at supporting transformative discoveries that will lead to breakthroughs in understanding human brain function. Guided by the long-term scientific plan, “BRAIN 2025: A Scientific Vision,” this FOA specifically seeks to support efforts addressing core ethical issues associated with research focused on the human brain and resulting from emerging technologies and advancements in research and development supported by The BRAIN Initiative®. The hope is that efforts supported under this FOA might be both complimentary and integrative with the transformative, breakthrough discoveries being supported through The BRAIN Initiative®.
This funding opportunity announcement (FOA), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, aims to support full development of entirely new or next generation noninvasive human brain imaging tools and methods that will lead to transformative advances in our understanding of the human brain. The FOA seeks innovative applications that are ready for full-scale development of breakthrough technologies with the intention of delivering working tools within the timeframe of the BRAIN Initiative (“BRAIN 2025: A Scientific Vision,” https://braininitiative.nih.gov/). This FOA represents the second stage of the tool/technology development effort that started with RFA-MH-14-217 and RFA-MH-15-200.
This Funding Opportunity Announcement (FOA) intends to assemble a group of Specialized Collaboratories that will adopt scalable technology platforms and streamlined workflows to accelerate progress towards establishing reference cell atlases of human brain and/or non-human primate brains. A central goal of this and the three companion FOAs is to build a brain cell census resource that can be widely used throughout the research community. Watch an informational Webinar: https://youtu.be/Zd0JWzBJH5Q (Please copy and paste the url in your browser)
This Funding Opportunity Announcement (FOA) intends to support a Brain Cell Data Center (BCDC) that will work with other BICCN Centers and interested researchers to establish a web-accessible information system to capture, store, analyze, curate, and display all data and metadata on brain cell types, and their connectivity. The BCDC is expected to: (1) lead the effort to establish spatial and semantic standards for managing heterogeneous brain cell census data types and information; (2) lead the effort to collect and register multimodal brain cell census data to common brain coordinate systems; (3) generate searchable 2D and 3D digital brain atlases for cell census data; and (4) generate a unified and comprehensive brain cell knowledge base that integrates all existing brain cell census data and information across diverse repositories. A central goal of this and the three companion FOAs is to build a brain cell census resource that can be widely used throughout the research community. Watch an informational Webinar: https://youtu.be/Zd0JWzBJH5Q (Please copy and paste the url in your browser)
This Funding Opportunity Announcement (FOA) intends to assemble a group of Comprehensive Centers that will adopt scalable technology platforms and streamlined workflows to generate a comprehensive 3D brain cell reference atlas encompassing molecular, anatomical, and physiological annotations of brain cell types in mouse, and incorporate additional genetic and other advanced cell-specific targeting approaches and tools to facilitate this goal. A central goal of this and the three companion FOAs is to build a brain cell census resource that can be widely used throughout the research community. Watch an informational Webinar: https://youtu.be/Zd0JWzBJH5Q (Please copy and paste the url in your browser)